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Note 

Existence of the Solution of a 
Nonlinear Integro- Differential Equation 

The existence and uniqueness of the solution u(t) of the equation 

du(t) 
dr+a(t)u(t)+jo’dsk(t,s)u(t--)u(s)=f(t); O<t<T,u(O)=c (1) 

was studied by Chang and Day [l], and more recently by Tang and Yuan [2]. 
Here u(t), f(t), and k(t, s) are known functions of t and s in [0, T]. Equation (1) 
is easily reduced to an equivalent fixed-point equation [ 11: 

u(t) = c CA(‘) + ‘dTe-C~(r)-~(~)lf(T) 
s 0 

- 
s 
d dz e-[A(‘)--A(r)l 1’ ds k(z, s) u(~ -s) u(s) 

0 

= (F(u))(t), (2) 

where A(t)=lbdz U(T). In [2], an equation in u(t) &(‘I similar to (2) was 
considered. However, both of the formulations are equivalent and the arguments of 
one are applicable to the other with obvious replacements. 

With u. given, let {u,} be defined by a,,+, = F(u,), n = 0, 1,2, . . . . {u,,} will be 
called the iterative sequence generated by uo. It was shown in [l] that if a(t) 3 0, 
ICI + Ji- dt If(t)1 G -t and sr dt J;, ds Ik(s, s)l < 1, then the iterative sequence 
generated by u0 = F(0) converges uniformly to a unique solution of (1). In [2], the 
existence and uniqueness of the solution is established as long as a(t), f(t), and 
k( t, s) are continuous functions. Existence in [2] was deduced by invoking 
Schauder’s fixed-point theorem. The result in [l] was concluded essentially by the 
contraction mapping theorem. The conditions of [ 1, 21 describe overlapping classes 
of problems. For problems encountered in practice, the condition of [ 11 is quite 
restrictive while that of [2] covers a reasonably large class. However, the result of 
[ 1 ] is constructive and thus may be used to approximate the solution. 

This note shows that the iterative sequences of the type considered in [1] 
converge uniformly to the unique solution of (1) with a milder assumption than 
that of [2]. To be precise, we assume that 

(i) functions u(t) and f(t) are absolutely integrable on [0, T]; and 
(ii) supre co,rl St, ds MT, $11 exists. 
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The assumed integrability of [a( t)l implies that IA(t) - A(r)1 for each t, 7 in 
[0, r] is bounded by a constant independent of t and 7. Assumptions (i) and (ii) 
are then easily seen to imply that 

and 

I g(t)1 = I(W))(t)l G r (3) 

J; ds Irc(t, 7, s)l = il’ ds Ie~~~(‘)-~(~)‘k(r, s)l GM, (4) 

where 5 and A4 are some constants, independent of t and 7. Let h and c( be some 
constants such that h 2 25 and u 2 h2A4/< and define the set Q as 

Q= u:lu(r)l~he”and~~~lu(r)ldtenists}. 
{ 

We state the result as 

THEOREM. Let assumptions (i) and (ii) be satisfied. Then the iterative sequence 
generated by an arbitrary uO in Q converges uniformly to the unique solution u of (1) 
in Q. 

Proof We divide the proof in the following four steps. 

Step 1. u0 E Q implies that u, E Q for n = 1, 2, 3, . . . . 

Proof: The result will follow if VE Q implies that F(u) E Q, which may be 
deduced by slightly adjusting the argument of Step 3, Theorem 2.1 of [2] as shown 
below. With u E Q, 

I(~(o))(t)l d I g(t)1 + j-; d7 ib’ ds Idt, 7, s)l I47 -s)l b(s)1 

h2M 02 <<+-e 
0: 

Step 2. For each t, le,(t)l = J(u,+ 1 - u,,)(t)1 < (2h/n!)(2hMt)” ear. 

Proof Since u. and ui are in Q, the statement is true for n = 0. It follows from 
the definitions that 

e n+,(t)= -~~d75,‘dsCK(f,T,S)u,+, (7 - s) + x(t, 7, 7 -s) U,(T - s)] e,(s). 
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Assuming that the estimate is valid for e,(t), and using the fact that u, E Q for each 
n from Step 1, we have 

< $ (2hM)” + ' e" i' d7 7" 
0 

= & (2hMt)” + ’ e”‘. 

The result for each n follows by induction. 

Step 3. u,(t) +n _ x u(t) E Q, uniformly with respect to t E [0, r]. 

ProoJ An argument is standard: From Step 2, the series w,,(t) = Cy=, ej(t) is 
absolutely and uniformly convergent for 

i le,(t)l <2he” i 7~ 2heCDLfzhM” 
/=O /=o . 

[ 

n-l 

u(t)= lim u,(t)= lim uo+ 1 ej(t) 
n + m ,1 - cc /=O 1 

exists. Uniform convergence of { Iw, I } implies the same for 
{u,,}. It is clear that u E Q. 

Step 4. u is the unique solution of (1) in Q. 

Proof: From Step 3, we have 

{ wn} and hence for 

Consequently, 

u(t)= lim u,+, 
n-m (f)= g(t)-;:\ j-i d7 il'ds K(t, T,s)u,(T-.T)u,(s). 

The integrand is bounded by an integrable function h2 Irc(r, 7, s)l err. Hence, by the 
Lebesgue dominated convergence theorem and Step 3, we have 

= (F(u))(f). 

This implies that u is a solution of (1). Let u E Q be a different solution. Then 

d(t) = u(t) - u(r) 
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Since u, v are in Q, Ih( Q 2he”“. As in Step 2, it follows that 

Id(t)1 Q $ (2hMt)” e” 

for each n, and hence 6(t) = 0. 
Instead of (2), one may consider the fixed-point equation, 

u(t) = c + 1; dz [f(r) -a(r) u(z) - !6’ ds k(s, s) u(5 - s) u(s)] 

which is also equivalent to (1). The arguments used in the present note lead to 
similar conclusions. 
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